A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

DE88 009115

Los Alemas National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: PRELIMINARY MODELING OF THE TMI-2 ACCIDENT WITH MELPROG-TRAC

AUTHOR(S): Richard P. Jenks

SUBMITTED TO: American Nuclear Society Topical Meeting on The TMI-2 Accident Materials Behavior and Plant Recovery Technology October 31-November 4, 1988 Washington, DC

MASTER

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royal, y-free ligense to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes

. he Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. NRC.

OS Alamos National Laboratory Los Alamos, New Mexico 87545

FORM NO 835 R4 ----

DISTRIBUTION OF THE DEPENDENT OF THE PARTY

account of work sponsored by DISCLAIMER

an agency of the United State

bor any of their

thereof,

Neither 1: Called States Garage

9

5 ź

2

prepared

2

1

legal liability or repon

Î

product,

miormation, apparatus,

trade name, trademark

à

B Ì

owned rig

si hati s

5

dectored

8

ð

Tecon

3

agency thereof. The endorsement.

8

۳

멸달

5

PRELIMINARY MODELING OF

THE TMI-2 ACCIDENT WITH MELPROG-TRAC

by

Richard P. Jenks Safety Code Development Group, N-9 Los Alamos National Laboratory

INTRODUCTION

In support of Nuclear Regulatory Commission and Organization for Economic Cooperation and Development (OECD)-sponsored Three Mile Island-Unit 2 (TMI-2) Analysis Exercise studies, work has been performed to develop a simulation model of the TMI-2 plant for use with the integrated MELPROG-TRAC computer code. 1,2,3,4,5Numerous nuclear power plant simulation studies have been performed with the TRAC computer code in the past.^{*} Some of these addressed the TMI-2 accident or other hypothetical events at the TMI plant.^{6,7,8} In addition, studies have been previously performed with the MELPROG-TRAC code using Oconee-1 and Surry plant models.^{9,10,11,12} This paper describes the preliminary MELPROG-TRAC input model for severe accident analysis.

Initial modeling efforts were directed at converting earlier MELPROG and TRAC input decks to work with the latest version of the integrated code. Subsequent efforts

[•] More than 125 full-scale plant calculations have been performed at Los Alamos in the last several years. These calculations covered numerous hypothetical accidents (steam-generator tube rupture, loss of feedwater, small-break loss-of-coolant accident, boron dilution, anticipated-transient without scram, loss-of-offsight power, etc.) for most types of nuclear steam supply systems (Babcock & Wilcox, Westinghouse, and Combustion Engineering. A listing of these calculations and associated report numbers is available by writing to the author at MS K555, Los Alamos National Laboratory, Los Alamos, NM 87545.

involved adjusting the existing models to more accurately predict the initial conditions and the accident sequence to the end of Phase 2 (174 min). The initial conditions and accident sequence are shown in Tables 1 and 2 with comparisons given with preliminary calculational results obtained using early versions of the input model.

INPUT MODELS

The preliminary MELPROG input model is depicted in Figure 1. It consists of the following structures to define the reactor pressure vessel and associated principal vessel internals:

vessel bottom head	flow distributor		
in-core instrumentation tubes	lower grid forging and shell		
lower grid support posts	lower grid distributor plate		
lower grid rib section	upper grid rib section and ring		
control rod assembly guide tubes	upper support plate		
vessel top head	thin metal in upper head		
core barrel	baffle plate		
formers	plenum cylinder		
core support shield	vessel wall plus thermal shield		

The preliminary MELPROG model also contains a core model that includes a basic representation of the fuel rods and the full-length control rods. The basic fuel rod consists of an axial fuel/gap/cladding region with an upper region for the fission gas plenum (spring, spacer pellet, end plugs and spacer grids not explicitly modeled). The full-length control rods are similarly modeled with an axial absorber/cladding region.

The TRAC input model for the primary system is depicted in Figure 2. It models both hot legs, all four cold legs, the reactor-coolant pumps and the pressurizer. In addition, it models both steam generators and sufficient operator and equipment control to capture operator and equipment actions during the system transient. The secondary system (not shown) includes only sufficient components to accurately predict primaryto-secondary heat transfer and steam generation. The feedwater flows (both main and auxiliary) and steam lines are provided as boundary conditions.

DISCUSSION

The modeling of the TMI-2 accident presented a chaitenge, requiring accurate establishment of initial and boundary conditions. This requirement was evident from initial calculations that did not show the repressurization that was actually observed in the plant after the pressurizer power-operated relief valve was closed. The need to accurately model initial and boundary conditions was further indicated by the incorrectly predicted draining of the pressurizer. It has been postulated that this early draining was most likely caused by excessive vessel liquid inventory provided by our earlier preliminary model. This excessive liquid inventory allowed the primary system to become overcooled during Phase 1 (prior to 100 minutes), and prevented the simulation of core damage towards the end of Phase 2 (prior to 174 minutes).

Current efforts are directed at establishing more accurate initial and boundary conditions and developing a more detailed core model for the MELPROG input. The initial and boundary conditions are consistent with the data base that has been provided as part of the Initial-Conditions Boundary-Conditions (ICBC) software to support the TMI-2 Analysis Exercise.¹³ The core model is based on review of plant data developed for earlier modeling of the TMI-2 accident and more recent plant data provided to TMI-2 Analysis Exercise participants.

REFERENCES

- 1. W. J. Camp, M. F. Young, J. L. Tomkins, J. E. Kelly, P. J. Maudlin and R. J. Henninger, "MELPROG-PWR/MOD1: A mechanistic Code for Analysis of Reactor Core Melt Progression and Vessel Attack Under Severe Accident Conditions," Sandia National Laboratories report, to be published.
- Safety Code Development Croup, "TRAC-PF1/MOD2: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis," Los Alamos National Laboratory report LA-11012-M (NUREG/CR-4./23), to be published.
- 3. B. E. Boyack, H. Stumpf and J. F. Lime, "TRAC User's Guide," Los Alamos National Laboratory report LA-10590-M (NUREG/CR-4442) (November 1985).
- 4. R. P. Jenks and V. Martinez, "TRAC Support Software," Los Alamos National Laboratory report LA-11214-MS (NUREG/CR-5071) (June 1988).

- D. R. Liles, J. W. Spore, T. D. Knight, R. A. Nelson, M. W. Cappiello, K. O. Pasamehmetoglu, J. H. Mahaffy, L. A. Guffee, H. J. Stumpf, P. J. Dotson, R. G. Steinke, P. R. Shire, S. E. Greiner, and K. B. Sherwood, "TRAC-PF1/MOD1 Correlations and Models," Los Alamos National Laboratory report (LA-11208-MS) (NUREG/CR-5069), to be published.
- J. R. Ireland, P. K. Mast, T. R. Wehner, P. B. Dleiweis, W. L. Kirchner, and M. G. Stevenson, "Preliminary Calculations Related to the Accident at Three Mile Island," Los Alamos National Laboratory report LA-8273-MS (NUREG/CR-1353) (March 1980).
- 7. B. Nassersharif, "Analysis of Multiple-Tube Ruptures in Both Steam Generators for the Three Mile Island-1 Pressurized Water Reactor," Los Alamos National Laboratory document, LA-UR-85-1404 (April 1985).
- B. Nassershirif, "Analysis of Steam-Generator Tube-Rupture Events Combined with Auxiliary-Feedwater Control-System Failure for Three Mile Island-Unit 1 and Zion-Unit 1 Pressurized Water Reactors," Los Alamos National Laboratory document LA-UR-85-4145, presented to the Thermal Reactor Safety Meeting, San Diego, California, February 2-6, 1986.
- R. J. Henninger and B. E. Boyack, "An Integrated TRAC/MELPROG Analysis of Core Damage From a Severe Feedwater Transient in the Oconee-1 PWR," Los Alamos National Laboratory document LA-UR-84-2807, presented to the International ANS/ENS Topical Meeting on Thermal Reactor Safety San Diego, California, February 2-6, 1986.
- B. E. Boyack and R. J. Henninger, "TRAC/MELPROG Analyses of TMLB' Transients in Oconee-1," Los Alamos National Laboratory document LA-UR-85-2898, presented to the Thirteenth Water Reactor Safety Research Information Meeting, Gaithersberg, Maryland, October 1985.
- R. J. Henninger and B. E. Boyack, "An Integrated TRAC/MELPROG Analysis of Core Damage From a Severe Feedwater Transient in the Oconee-1 PWR," Los Alamos National Laboratory document LA-UR-85-4173, presented to the International ANS/ENS Topical Meeting on Thermal Reactor Safety, San Diego, California, February 2-6, 1986.
- R. Henninger and J. F. Dearing, "Integrated TRAC/MELPROG Analyses of a PWR Station Blackout," Los Alamos National Laboratory document LA-UR-87-167, presented to the National Heat Transfer Joint Conference, Heat Transfer Aspect of Severe Accident Session, Pittsburgh, Pennsylvania, August 1987.
- R. W. Brower, L. J. Fackrell, D. W. Golden, M. L. Harris and C. L. Olaveson, "ICBC Version 3.1 TMI-2 Initial and Boundary Conditions Data Base," General Public Utilities report GEND-INF-078 (January 1988).

TABLE 1. TMI-2 SEQUENCE OF EVENTS

Time (s)		Event	
TMI-2	MELTRAC		
0	0	Loss of main feedwater	
0	0	Turbine trip	
0	0	Steam stop valves in steam chest close	
0	0	AFW pumps start	
4	5.2	Pressure>15.65 MPa: PORV opens	
5		Turbine bypass valves open	
8	8	Reactor trips	
15	14.6	PORV does not close; pressure<15.65 MPa	
31		AFW valves open	
41	41	HFI on	
90	no	Upper head of vessel saturated	
90	93	Steam generators boil dry	
300	326	Primary system repressurization	
450	455	Pressurizer full	
480	493	Primary pressure decreases (AFW on)	
4380	4422	Loop B RCPs trip, Loop-A voiding	
6000	6048	Trip A-loop RCPs (end Phase 1)	
6720	7482	Superheat in Loop-A hot leg - core uncovery	
7500	7482	Primary system repressurization starts again	
7800	no	Cladding failures (1100 K) followed by Zirc oxidation (1800 K) and fuel liquefaction	
8340	8340	Pressurizer PORV block valve closed	
10440	10400	Restart of Loop B-2 RCP (end Phase 2) & End of Calculation	

•

TABLE 2. TMI-2 PLANT CONDITIONS: INITIAL

PARAMETER	TMI-2	MELTRAC
AUX feedwater injection SG-A (kg/s) AUX feedwater injection SG-B (kg/s) Calculated PORV flow rate (kg/s) Cold leg temperature 1A (K) Cold leg temperature 1B (K) Cold leg temperature 2A (K) Cold leg temperature 2B (K)	$\begin{array}{c} 0.0 \\ 0.0 \\ 2.59 \pm 0.517 \\ 561 \pm 1.06 \\ 565 \pm 1.06 \\ 548 \\ 565 \end{array}$	0.0 0.0 564.3 564.1 564.3 564.1
Hot leg temperature A-loop (K)	592 ± 0.633	591.9
Hot leg temperature B-loop (K)	592 ± 0.633	591.9
HPI makeup based on expected results (kg/s)	5.44	5.44
letdown flow (kg/s)	4.18 ± 0.335	4.11
Main steam temperature A (K)	586 ± 1.17	584.3
Main steam temperature B (K)	586 ± 1.17	584.3
Pressure-primary (MPa)	15.2 ± 0.0752	14.93
Pressurizer level (m)	5.77 ± 0.61	5.55
RC flow rate loop A (kg/s)	8280 ± 178	8603
RC flow rate loop B (kg/s)	8560 ± 184	8605
Reactor power (MW)	2700 ± 39	2689
Steam gen. A feedwater flow (kg/s) Steam gen. B feedwater flow (kg/s) Steam gen. feedwater temp. (K) Steam generator A pressure (MPa) Steam generator B pressure (MPa)	$723 \pm 13.4 717 \pm 13.4 513 \pm 0.989 7.31 \pm 0.112 7.24 \pm 0.112$	720 720 512.4 6.24 6.24
TOT pressurizer heater group power (MW)	1.39	0.39

,

Figure 1. TMI-2 MELPROG VESSEL MODEL

Figure 2. TMI-2 TRAC PRIMARY-SYSTEM MODEL